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2 Department of Applied Mathematics and Theoretical Physics, University of Cambridge,
Silver Street, Cambridge CB3 9EW, UK

(Received 7 May 1997 and in revised form 5 November 1997)

Prandtl–Meyer flows with heat addition from homogeneous condensation not ex-
ceeding a critical value (subcritical flows) are investigated by an asymptotic method
in the double limit of a large nucleation time followed by a small droplet growth
time. The physically distinct condensation zones, with detailed analytical structure,
are displayed along streamlines and the flow field in each zone is determined uti-
lizing the asymptotic solution of the rate equation along streamlines. In particular
the nucleation wave front, which corresponds to states of maximum nucleation along
streamlines, is accurately located independently of the particular condensation model
employed. Results obtained using the classical nucleation equation together with the
Hertz–Knudsen droplet growth law show, despite qualitative agreement, considerable
differences between the nucleation wave fronts and measured onset conditions for
the experiments of Smith (1971), because of intersecting characteristics in the heat
addition zones. This shows the necessity of including an embedded oblique shock
wave in the expansion fan of corner expansion flows for the cases investigated.

1. Introduction
Non-equilibrium condensation in high-speed expansion flows has been investigated

theoretically and experimentally for decades because of its importance in science and
technology. For the present time the review articles by Wegener (1969), Gyarmathy
(1976), and Kotake & Glass (1981) can serve as a comprehensive introduction to the
subject. The theory of two-phase flow with non-equilibrium homogeneous conden-
sation was first formulated by Oswatitsch (1942) by combining the nucleation rate
equation with a droplet growth law. Most of the earlier efforts concentrated on exper-
imental and numerical investigation of one-dimensional steady nozzle flows (Wegener
& Mack 1958; Wegener & Pouring 1964; Hill 1966; Barschdorff 1971). Steady two-
dimensional supersonic nozzle flow with homogeneous condensation was first investi-
gated by Bartlmä (1964) and later by Davydov (1971), Tkalenko (1972) and Bratos &
Jaeschke (1974) using the numerical method of characteristics. In this case only sub-
critical flows, i.e. flows where the amount of heat released by condensation does not ex-
ceed a critical value, could be treated. Numerical solutions of steady two-dimensional
nozzle flows have only recently been carried out by Schnerr (1989) and Schnerr &
Dohrmann (1990) for both subcritical and supercritical flows (flows with an embedded
shock due to excessive heat addition by condensation) using the finite volume method.

In addition to nozzle flows, condensation phenomena can also be investigated in
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non-stationary rarefaction waves in the driver section of a shock tube and in Prandtl–
Meyer flows around a sharp corner. Among the investigations in non-stationary
rarefaction waves, one can cite the experimental studies of Courtney (1965), Homer
(1971), Kawada & Mori (1973), Barschdorff (1975), Kalra (1975) and Peters (1987).
The numerical solution to the problem was discussed by Sislian & Glass (1976), using
the numerical method of characteristics, and by Smolders, Niessen & Van Dongen
(1992) using the random choice method. An asymptotic closed-form solution of the
problem has recently been given by Delale, Schnerr & Zierep (1995). Condensation
phenomena in supersonic expansion flows around a sharp corner (Prandtl–Meyer
flows) have been investigated experimentally and numerically by Smith (1971), Kur-
shakov, Saltanov & Tkalenko (1971) and Frank (1979, 1985). The experiments mainly
concentrated on measurements of the onset conditions, using a Mach–Zehnder inter-
ferometer, whereas numerical solutions employed the method of characteristics in the
absence of embedded shock waves. None of the numerical and experimental inves-
tigations performed to date are sufficient in satisfactorily describing Prandtl–Meyer
flows with homogeneous condensation, particularly supercritical flows, and further
investigations need to be pursued (for example, a finite volume computation of these
flows should prove to be useful).

It is the aim of this investigation to analyse these flows by an asymptotic method
which was originally given by Blythe & Shih (1976) and further developed by
Clarke & Delale (1986), and which has successfully been applied to subcritical and
supercritical nozzle flows (Delale, Schnerr & Zierep 1993 a, b) and to shock tube flows
(Delale et al. 1995). Such a closed-form asymptotic solution of the condensation rate
equation is necessary in order to identify the distinct condensation zones with detailed
analytical structure along streamlines. In addition the solution for the flow field in each
condensation zone can be predicted very accurately independent of the theories of
nucleation and droplet growth to be employed, and the predictions can be compared
to measurements mapped over the same regions. We present herein the asymptotic
solution for subcritical Prandtl–Meyer flows with homogeneous condensation by
asymptotic analysis of the condensation rate equation along streamlines. From this
analysis we identify the condensation zones along streamlines in a manner analogous
to quasi-one-dimensional nozzle flows (cf. Delale et al. 1993 a). In particular we
determine in closed form the nucleation wave front, which corresponds to states
of maximum nucleation along streamlines in the expansion fan. We construct an
algorithm for the subcritical expansion of moist air around a sharp corner utilizing
the classical nucleation theory and the Hertz–Knudsen droplet growth law. The
results obtained are then compared with the measurements of Smith (1971). Despite
satisfactory qualitative agreement, substantial quantitative disagreement is observed
between the position of the nucleation wave front computed by the subcritical
algorithm and the locations of the measured onset conditions. This is because the
characteristics, or Mach lines, emanating from the corner intersect in the heat addition
zones, showing clearly the existence of an embedded oblique shock wave that pushes
the nucleation wave front upstream towards the onset measurements. This indicates
the need for the computation of flows with an embedded shock wave (supercritical
flows) which will not be discussed in this article.

2. Equations of motion
We consider the Prandtl–Meyer expansion of a condensable vapour (denoted by

subscript v) with an inert carrier gas (denoted by subscript i) around a sharp corner O
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Figure 1. Configuration of streamlines and Mach lines in Prandtl–Meyer flows around a sharp
corner located at the origin O of the (x′, y′)-plane (OT and OH are, respectively, the isentropic tail
and head of the expansion fan, OS is the Mach line corresponding to saturated thermodynamic
states and regions 1 and 2 denote, respectively, the uniform oncoming flow and the uniform flow
downstream of the expansion fan).

between two uniform states separated by an expansion fan, as shown in figure 1. As
soon as the flow crosses the saturation Mach line OS, where the vapour is saturated
and before which no detectable condensation is observed, clusters of vapour molecules
of the critical size for a tendency to growth (condensation nuclei) are produced by
homogeneous nucleation. Rapid growth then sets in on the condensation nuclei to
form droplets of various sizes. Consequently a non-equilibrium two-phase dispersed
droplet flow with latent heat addition from condensation is created. Assuming that
droplets move with the same velocity as the surrounding gas mixture (no velocity
slip) and further that they are at the same temperature as that of the surrounding gas
mixture (one-temperature model), the equations of motion for the non-equilibrium
two-phase mixture can be written in the form corresponding to a single-phase flow
of a homogeneous mixture with pressure p′, density ρ′, temperature T ′, flow speed
u′, flow direction θ (as shown in figure 1) and enthalpy h′ (two-phase homogeneous
dispersed droplet flow model). In what follows we discuss in detail the equations of
motion of the two-phase mixture in this model.

2.1. The flow and state equations in natural coordinates

We consider the Euler equations for the steady two-dimensional supersonic flow of a
mixture of a condensable vapour and a carrier gas in natural coordinates (s′, n′), as
shown in figure 1:

1

ρ′
∂ρ′

∂s′
+

1

u′
∂u′

∂s′
− ∂θ

∂n′
= 0, (1)
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ρ′u′
∂u′

∂s′
= −∂p

′

∂s′
, (2)

ρ′u′
2 ∂θ

∂s′
=
∂p′

∂n′
(3)

and

ρ′
∂h′

∂s′
=
∂p′

∂s′
. (4)

The mixture enthalpy h′ is related to the mixture temperature T ′ by

h′ = c′pmT
′ − gL′(T ′), (5)

where g, called the condensate mass fraction, is the ratio of the local mass flow rate
of the condensed phase to that of the mixture along streamlines, L′(T ′) is the latent
heat of condensation corresponding to temperature T ′, and c′pm is the specific heat of
the mixture at constant pressure, given by

c′pm = (1− w1)c
′
pi + w1c

′
pv, (6)

with c′pi and c′pv denoting respectively the specific heats at constant pressure of the
carrier gas and of the condensable vapour and with w1 denoting the initial specific
humidity (the mass fraction of the vapour component in the mixture) of the oncoming
flow.

The thermal equation of state of the mixture, assumed to consist of ideal gases,
follows by Dalton’s law as

p′ = p′i + p′v =
<
µi
ρ′iT

′ +
<
µv
ρ′vT

′, (7)

where< = 8.31441 J mol−1K−1 is the universal gas constant, µi and µv are, respectively,
the molecular masses of the carrier gas and of the condensable vapour, p′i and p′v
are, correspondingly, the partial pressures of the carrier gas and of the condensable
vapour, and ρ′i and ρ′v are, respectively, the partial densities of the carrier gas and of
the condensable vapour and are related to the mixture density ρ′ by the relations

ρ′i = (1− w1)ρ
′ (8)

and

ρ′v = (w1 − g)ρ′. (9)

Using the above relations the thermal equation of state of the mixture takes the form

p′ =
<
µm

(
1− µm

µv
g
)
ρ′T ′, (10)

with the mixture molecular mass µm defined by

1

µm
≡ 1− w1

µi
+
w1

µv
. (11)

We now conveniently normalize the flow variables p′, ρ′ and T ′ (from now on all
variables with a prime are meant to denote physical values whereas those without a
prime denote normalized values) as

p =
p′

p′1
, ρ =

ρ′

ρ′1
, T =

T ′

T ′1
, (12)

with subscript 1 denoting values of the oncoming flow, whereas the flow speed u′, the
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mixture enthalpy h′, the mixture specific heat at constant pressure c′pm and the latent
heat L′ are normalized somewhat differently as

u =
u′

(<T ′1/µm)1/2
, h =

h′

<T ′1/µm
, cpm =

c′pm

</µm
and L =

L′

<T ′1/µv
. (13)

The streamwise and normal coordinates s′ and n′ are also normalized with respect to
a characteristic flow length `′ as

s =
s′

`′
and n =

n′

`′
. (14)

Then the flow and state equations (1)–(4) and (10) take the normalized form

1

ρ

∂ρ

∂s
+

1

u

∂u

∂s
− ∂θ

∂n
= 0, (15)

ρu
∂u

∂s
= −∂p

∂s
, (16)

ρu2 ∂θ

∂s
=
∂p

∂n
, (17)

ρ
∂h

∂s
=
∂p

∂s
, (18)

and

p =
(

1− µm

µv
g
)
ρT (19)

with the normalized mixture enthalpy h given by

h = cpmT − gL(T ). (20)

These normalized flow and state equations (15)–(20) do not form a complete system
unless they are supplemented by the condensation rate equation for the condensate
mass fraction g.

2.2. The condensation rate equation

The condensation rate equation for g is constructed along a streamline from a
nucleation rate equation and a droplet growth law (see e.g. Clarke & Delale 1988).
For this purpose we consider a streamtube (with thickness unity perpendicular to the
plane of flow) formed by two streamlines with arbitrarily small normal separation
∆n′1 in the uniform oncoming flow, as shown in figure 1. We let m′r(s

′; ξ′) denote the
mass of a droplet of radius r′(s′; ξ′) at a point with streamwise coordinate s′ created
at some point with coordinate ξ′ 6 s′ along the same streamline. We also let ∆n′(s′)
be the normal separation between the streamlines at s′ and J ′(ξ′) be the rate of
production of clusters of critical radius r∗′(ξ′) per unit volume (nucleation rate) at
some point ξ′ along the streamlines. The integral condensation rate equation for g
along streamlines can then be written as

g(s′) ≡ ∆m′con
∆m′

=
1

∆m′

∫ s′

s′c

m′r(s
′; ξ′)∆n′(ξ′)J ′(ξ′)dξ′, (21)

where ∆m′con and ∆m′ are respectively the dispersed liquid (condensed phase) and the
mixture mass flow rates through the same streamtube, and where s′c corresponds to
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the value of s′ at which the streamline considered crosses the saturation Mach line
OS.

Despite the fact that various theories of nucleation yield nucleation rates J ′ which
are sometimes different by orders of magnitude in comparison with experiments, all
can be cast into the common functional form

J ′ = ζ ′Σ(p, T , g) exp [−K−1B(p, T , g)]. (22)

Here B(p, T , g) is the normalized activation function and is O(1) over regions where
nucleation rates are significant, K is the nucleation parameter with magnitude much
less than unity signifying a relatively large nucleation period to achieve significant
nucleation rates, ζ ′ is a normalization constant for the nucleation rate and Σ(p, T , g)
is the normalized pre-exponential factor of order unity in magnitude. Equation (22)
suggests that no specific choice of the functions Σ and B and of the parameters ζ ′

and K is required although they may vary considerably in different theories. Thus
the analysis can be kept independent of the particular choice of the nucleation rate
equation to be employed.

For the discussion of the droplet growth law, we first normalize the droplet radius
r′ by

r =
r′

r′d
, (23)

where the normalization constant is conveniently chosen as

r′d =

(
3ρ′1

4πρ′con`
′ζ ′

(
<
µm
T ′1

)1/2)1/3

, (24)

with ρ′con denoting the mean density of the condensate in the range of temperatures
investigated. Assuming that the droplet growth rate is independent of the droplet
radius under the conditions investigated, the droplet growth law can be cast into the
normalized form

∂r

∂s
= λΩ(p, T , g), (25)

where Ω is the droplet growth function depending on the thermodynamic state of the
mixture and O(1) in magnitude, and λ is the droplet growth parameter. In particular,
rapid droplet growth in the expansion fan, which corresponds to small droplet growth
time compared to characteristic flow time, is characterized by λ� 1 . The initial-value
problem of (24) with initial value r(ξ; ξ) = r∗(ξ) along streamlines can be solved by
simple quadrature, resulting in the explicit normalized equation

r(s; ξ) = r∗(ξ) + λ

∫ s

ξ

Ω(η)dη, (26)

where r∗ = r′
∗
/r′d is the normalized critical radius. Noting that m′r(s

′; ξ′) and ∆m′ in
(21) are given by

m′r(s
′; ξ′) = 4

3
πρ′con[r

′(s′; ξ′)]3 (27)

and

∆m′ = ρ′1u
′
1∆n

′
1 = ρ′ (s′)u′(s′)∆n′(s′), (28)

and using (22), (23) and (25) together with the normalization of the previous section,
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the integral condensation rate equation (21) takes the normalized form

g(s) =

∫ s

sc

[
r∗(ξ) + λ

∫ s

ξ

Ω(η)dη
]3 Σ(ξ)

ρ(ξ)u(ξ)
exp[−K−1B(ξ)]dξ (29)

along streamlines.

2.3. Alternative forms of the equations of motion

Despite the fact that (15)–(20) together with the condensation rate equation (29)
form a complete integro-differential system for determining the flow field, alternative
forms of these equations may be useful in finding some particular or approximate
solutions valid under specific conditions. For this reason we present two more forms,
which will be used in obtaining particular solutions. We first discuss the form which
the equations take along a streamtube constructed from two adjacent streamlines
separated at the normalized streamwise coordinate s by the normalized normal
distance ∆n(s) ≡ ∆n′(s′)/`′ with arbitrarily small initial normalized normal separation
∆n1. Utilizing the geometric relation

∂θ

∂n
= − 1

∆n

∂∆n

∂s
, (30)

equations (15)–(20) can be conveniently cast into the integrated form

ρuA = u1, (31)

(p+ ρu2)A = 1 + u2
1 +R(s), (32)

cpmT + 1
2
u2 − µm

µv
L(T )g = cpm + 1

2
u2

1, (33)

p = ρT
(

1− µm

µv
g
)

(34)

along streamlines. In (31)–(34) the normalized area A(s) and impulse function R(s)
are defined by

A(s) =
∆n(s)

∆n1

(35)

and

R(s) =

∫ s

0

p(ξ)
dA

dξ
dξ, (36)

with the normalized streamwise coordinate s being measured from the tail of the
expansion fan OT (see figure 1); and the streamlines are given by their normalized
curvatures κ(s) as

κ(s) =
∂θ

∂s
=

1

ρu2

∂p

∂n
. (37)

Equations (31)–(36) are identical with the normalized equations of quasi-one-
dimensional nozzle flows with non-equilibrium condensation (Blythe & Shih 1976;
Clarke & Delale 1986) provided that s is replaced by the nozzle axial coordinate
and that A(s) is assumed to act as the normalized cross-sectional area of the nozzle.
This form of the equations of flow and state is particularly useful in cases where the
streamlines (and thereby A(s)) are known a priori or can somehow be approximated.

The system of equations of flow and state can also be cast (Vincenti & Kruger
1965; Clarke & Delale 1988) into characteristic form with a single condensation rate
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equation, as

ρudu+ dp = 0, (38)

h+ 1
2
u2 = cpmT − L(T )g + 1

2
u2 = cpm + 1

2
u2

1, (39)

udg − $ds = 0 (40)

on streamlines, and (
u2

a2
f

− 1

)1/2

dp± ρu2dθ − hg

hρ
af$

(
dη
dζ

)
= 0 (41)

on the characteristic lines
dn

ds
= ∓ 1

((u2/a2
f)− 1)1/2

, (42)

together with the thermal equation of state (19) valid everywhere in the flow field.
We have here defined the normalized local frozen speed of sound af by

a2
f = − hρ

hp − (1/ρ)
=

[cpm − (µm/µv)L1g]p

ρ[cpm − 1 + (µm/µv)(1− L1)g]
, (43)

where the various partial derivatives of the normalized specific mixture enthalpy h
evaluate to

hp =
[cpm − (µm/µv)L1g]

ρ[1− (µm/µv)g]
, (44)

hρ = −p[cpm − (µm/µv)L1g]

ρ2[1− (µm/µv)g]
, (45)

hg =
(µm/µv)p[cpm − (µm/µv)L1g]

ρ[1− (µm/µv)g]2
− µm

µv
L(T ), (46)

with L1 ≡ dL/dT , and where the coordinates η and ζ are given by the transformation(
d/dη
d/dζ

)
=

(u2 − a2
f)

1/2

u

∂

∂s
∓ af

u

∂

∂n
. (47)

In addition it is understood that the rate equation (40) along streamlines is to be
obtained by direct differentiation from (29) with $ defined by

$ = r∗
3
(s)
Σ(s)

ρ(s)
exp[−K−1B(s)]

+3λΩ(s)u(s)

∫ s

sc

[
r∗(ξ) + λ

∫ s

ξ

Ω(η)dη
]2 Σ(ξ)

ρ(ξ)u(ξ)
exp[−K−1B(ξ)]dξ (48)

on streamlines.

3. Particular analytical solutions of the equations of motion
We discuss here two analytical solutions to the equations of motion using the

alternative forms given in § 2.3. The first is the classical isentropic solution and is
discussed solely for notational convenience. The second is an approximate solution
valid for nearly frozen flows. Both will be useful in the asymptotic solution to be
discussed in the next section.
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3.1. The classical isentropic solution

It is well-known that for isentropic flow (g ≡ 0) equation (41) yields the Riemann
invariants

ω(M)± θ = constant (49)

on the characteristic lines

dn

ds
= tanµ = ± 1

(M2 − 1)1/2
(50)

where M is the isentropic Mach number, µ is the angle between the characteristic
lines and streamlines (see figure 1) and ω(M) is the Prandtl–Meyer function defined
by

ω(M) =

(
γ + 1

γ − 1

)1/2
tan−1

(
(γ − 1)

(γ + 1)
(M2 − 1)

)1/2
− tan−1

(
M2 − 1

)1/2
, (51)

with γ = cpm/(cpm − 1) denoting the adiabatic exponent of the mixture.
For a given oncoming uniform flow with Mach number M1 and flow direction

θ1 = 0 expanding around a sharp corner with angle θ2 at the origin of the (x, y)-plane
(see figure 1), it follows that

ω(M)− θ = ω(M1) (52)

everywhere. The angles of inclination ψ1 and ψ2, in the (x, y)-plane of figure 1, of
the tail OT and head OH of the isentropic rarefaction wave are then evaluated from
the relations ψ1 = sin−1(1/M1) and ψ2 = sin−1(1/M2) − θ2 where M2 is found from
ω(M2) = ω(M1) + θ2 . The solution along any Mach line with inclination angle ψ
in the rarefaction wave is obtained by first solving for the Mach number M from
ω(M)−sin−1(1/M) = ω(M1)−ψ and for the flow direction θ from θ = sin−1(1/M)−ψ,
and then using the expressions that relate the rest of the flow variables to the Mach
number. The solution thus obtained is self-similar, depending only on the single
coordinate ψ, which identifies the particular Mach line.

3.2. Solution for nearly frozen flows

We now return to the alternative formulation given by (31)–(37) for the flow through
a streamtube formed by two adjacent streamlines with arbitrarily small initial sep-
aration. We introduce nearly frozen flows by assuming weak coupling between the
flow equations together with the thermal equation of state and the condensation rate
equation. In this case the latent heat addition by condensation hardly influences the
frozen (isentropic) network of streamlines, so that the area A(s) and the streamline
curvature κ(s) defined, respectively, by (35) and (37), can be approximated by the
frozen relations

A(s) =
M1

M

[
1 + (γ − 1)M2/2

1 + (γ − 1)M2
1/2

](γ+1)/2(γ−1)

(53)

and

κ(s) = κf(s), (54)

where κf(s) denotes the curvature of the frozen streamlines under consideration.
Furthermore, it can be shown that for nearly frozen flows the differences between
the impulse function R(s) and its frozen value Rf(s), and between the latent heat
L(T ) and its frozen value L(Tf), are each of second order or higher compared with
the (first order) deviations of the flow variables from their frozen (isentropic) values
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(Clarke & Delale 1986; Delale et al. 1993 a ), so that the approximations

R(s) ≈ Rf(s) =
M1

M

(
1 + (γ − 1)M2

1/2

1 + (γ − 1)M2/2

)1/2
(1 + γM2)− (1 + γM2

1 ) (55)

and

L(s) ≈ Lf(s) ≡ L(Tf) (56)

hold along streamlines for nearly frozen flows. Equations (31)–(37) together with the
approximations given by (53)–(56) form the flow and state equations for nearly frozen
flows. These equations are precisely those for quasi-one-dimensional nearly frozen
nozzle flows (Clarke & Delale 1986), and yield the functional relations

u(g, s) =
2γ{[1 + u2

1 +Rf(s)]/(2u1) + [∆(g, s)]1/2}
[γ + 1 + (γ − 1)gµm/µv]

, (57)

ρ(g, s) =
u1

u(g, s)A(s)
, (58)

p(g, s) =
1 + u2

1 +Rf(s)− u1u(g, s)

A(s)
(59)

and

T (g, s) = 1 +
u2

1 − u2(g, s)

2cpm
+
µm

µv

Lf(s)g

cpm
, (60)

with ∆(g, s) defined by

∆(g, s) ≡
[1 + u2

1 +Rf(s)

2u1

]2

−
[γ + 1 + (γ − 1)gµm/µv

2γ

](
1− µm

µv
g
)(

1 +
u2

1

2cpm
+
µm

µv

Lf(s)g

cpm

)
(61)

on streamlines, where A(s) , Rf(s) and Lf(s) are, respectively, given by (53), (55) and
(56). It follows from (57) that ∆(g, s) = 0 corresponds to the critical flow condition
at which the amount of heat added to the flow along streamlines reaches the nearly
frozen critical amount. As a matter of fact the nearly frozen approximation becomes
invalid before such a condition can be reached; therefore, ∆(g, s) remains positive for
nearly frozen flows. The functional relations (57)–(61) together with the asymptotic
solution of the condensation rate equation (29) provide a complete analytical solution
along streamlines for nearly frozen flows.

4. Asymptotic solution for subcritical flows
The asymptotic solution for subcritical Prandtl–Meyer flows with homogeneous

condensation follows by combining the local solution of the equations of flow and
state with the asymptotic solution of the condensation rate equation along streamlines.
The latter is obtained in the double limit as K → 0 and then λ → ∞ characterizing,
respectively, large nucleation period to achieve significant nucleation rates followed by
small droplet growth time compared with the characteristic flow time. In particular the
behaviour of the activation function B(s) in (29) plays a dominant role in identifying
the distinct condensation zones along streamlines. A typical variation of the activation
function B along streamlines is shown in figure 2. For s 6 sc , where sc denotes the
streamwise coordinate where the saturation line OS of the vapour is traversed,
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Figure 2. The variation of the normalized activation function B along a streamline in subcritical
Prandtl–Meyer flows, exhibiting the physically distinct condensation zones (sc is the streamwise
location where saturation is reached and s` is the turning point of B).

the activation function B is infinite, corresponding to vanishing nucleation rates. It
decreases (corresponding to increasing nucleation rates) until it reaches a turning
point at s = s` where dB/ds = 0 and the nucleation rate is practically maximum.
Downstream of the turning point, for s > s`, the activation function B increases
rapidly, causing the nucleation rate to fall rapidly due to significant heat addition
from condensation. Further downstream nucleation practically terminates and droplet
growth causes the two-phase mixture to relax towards saturated equilibrium states.
Heat addition along any streamline is practically negligible in the interval sc 6 s 6 s`
(nearly frozen flows), whereas for s > s` a considerable amount of heat is released,
resulting in highly compressed flow regions (heat addition zones).

4.1. Nearly frozen zones

These condensation zones can be distinguished along streamlines in the interval
sc 6 s 6 s` where the flow field is nearly frozen. Both nucleation and droplet growth
are important in these zones; however, the influence of latent heat addition on the
flow field in these zones seems negligible except for the onset zone (OZ), a very
narrow zone just upstream of the turning point s = s` of B. From the behaviour
of the activation function B in the nearly frozen interval sc 6 s 6 s` (figure 2),
one can identify four physically distinct zones in this interval. These are the initial
growth zone (IGZ), the further growth zone (FGZ), the rapid growth zone (RGZ)
and the onset zone (OZ). Of these physically distinct zones, the first two are not
asymptotically distinct, and neither are the last two. Thus the asymptotic solution of
the rate equation (29) for these zones can be carried out in a combined fashion.

In the initial and further growth zones, dB/ds = O(1). They are distinguished
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physically. In IGZ no influence of the heat released by condensation on the flow field
can be found, so that all of the flow variables and thermodynamic functions assume
their frozen (isentropic) values, i.e. p = pf , ρ = ρf , T = Tf , B = Bf , Ω = Ωf , etc.
This is the only zone where the flow and state equations are decoupled from the
condensation rate equation. Within FGZ, deviations in B and its derivative dB/ds
from their frozen values Bf and dBf/ds start to occur because of latent heat addition
from growing droplets, despite the fact that these deviations are not significant
enough to influence the frozen field appreciably; however, the magnitudes of these
deviations at the beginning and end of this zone differ significantly. Actually the
initial growth zone (IGZ), where these deviations are exponentially small and can be
totally neglected, can be thought of as being embedded in the further growth zone
(FGZ). The combined asymptotic expressions for g and dg/ds along streamlines in
these zones then follow from (29) using Laplace’s method (Erdelyi 1956; Sirovich
1971) for an end-point minimum in the double limit as K → 0 and λ→∞ (for details
see Delale et al. 1993 a):

g(s) =
Σ(s)

ρ(s)u(s)
K4
(dB

ds

)−4

exp[−K−1B(s)]

{
6λ3Ω3(s)

−6λ2Ω2(s)
[r∗(s)dB/ds

K

]
+ 3λΩ(s)

[r∗(s)dB/ds
K

]2

−
[r∗(s)dB/ds

K

]3

}
(62)

and

dg

ds
= − Σ(s)

ρ(s)u(s)
K3
(dB

ds

)−3

exp[−K−1B(s)]

{
6λ3Ω3(s)

−6λ2Ω2(s)
[r∗(s)dB/ds

K

]
+ 3λΩ(s)

[r∗(s)dB/ds
K

]2

−
[r∗(s)dB/ds

K

]3

}
, (63)

with dB/ds given by

dB

ds
=
∂B

∂p

dp

ds
+
∂B

∂T

dT

ds
+
∂B

∂g

dg

ds
. (64)

The asymptotic laws of growth given by (62) and (63) for the condensate mass
fraction g and its derivative dg/ds are violated as dB/ds diminishes to O(K1/2) as
K → 0, and then we are by definition in the rapid growth zone RGZ (see figure 2).
The turning point s` of the activation function B, where dB/ds = 0 corresponding
to a maximum nucleation rate, marks the end of this zone. The beginning of the
collapse of the supersaturated vapour state (the onset or Wilson point sk), which can
either be detected empirically by light scattering or deduced by assigning numerically
a value gk for the condensate mass fraction at this point, occurs within this zone
and marks the beginning of the onset of condensation. The region lying between the
onset point sk and the turning point s` of the activation function along streamlines
is called the onset zone (OZ). Actually, the onset zone can be thought of as being
embedded in RGZ. Although the onset zone can be distinguished physically from the
very beginning of RGZ, these zones are not asymptotically distinct. In finding the
asymptotic solution of the condensation rate equation (29) in these zones by Laplace’s
method for an end-point minimum, it is important to mention that the activation
function B(ξ) can no longer be truncated at the end-point ξ = s after the second term
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dB/ds(ξ − s), as was done in FGZ, since the third term (1/2)d2B/ds2(ξ − s)2 (and in
some anomalous cases even higher-order terms) may become of the same order of
magnitude as the second term. The asymptotic expressions for g and its derivatives
dg/ds and d2g/ds2 in these zones, taking into account only the third-term correction,
then follow by Laplace’s method for an end-point minimum in the double limit as
K → 0 and λ→∞ (for details see Delale et al. 1993 a):

g(s) =
Σ(s)

ρ(s)u(s)
[2β(s)]−2exp

[ γ2(s)

8β(s)

]
exp[−K−1B(s)]

×
{

6λ3Ω3(s)D−4

[ γ(s)

(2β(s))1/2

]
+ 6λ2Ω2(s)[r∗(s)(2β(s))1/2]D−3

[ γ(s)

(2β(s))1/2

]
+3λΩ(s)[r∗(s)(2β(s))1/2]2D−2

[ γ(s)

(2β(s))1/2

]
+ [r∗(s)(2β(s))1/2]3D−1

[ γ(s)

(2β(s))1/2

]}
,

(65)

dg

ds
=

Σ(s)

ρ(s)u(s)
[2β(s)]−3/2exp
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8β(s)

]
exp[−K−1B(s)]
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6λ3Ω3(s)D−3

[ γ(s)
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]
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]
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and
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ds2
=

1
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}
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(67)

where D−ν(z), ν = 1, 2, 3, 4 is Whittaker’s parabolic cylinder function of z (Abramowitz
& Stegun 1965; Gradshteyn & Ryzhik 1980),

γ(s) ≡ −K−1 dB

ds
> 0 (68)

and

β(s) ≡ 1
2
K−1 d2B

ds2
> 0 (69)
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with dB/ds evaluated from (64) and d2B/ds2 given by

d2B

ds2
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∂B
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ds2
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d2T

ds2
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ds
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∂2B
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)
. (70)

The asymptotic expression for g and its derivatives along streamlines at s` then follow
in the limit as γ → γ` ≡ 0, β → β` , Σ → Σ`, etc. where by subscript ` we mean
evaluation at the turning point s = s` .

The flow field in each zone is obtained by combining the asymptotic expressions
for g and its derivatives exhibited above with the nearly frozen solution of § 3.2. As
mentioned earlier, in IGZ the nearly frozen solution for the flow field reduces to
the classical isentropic solution given in § 3.1. The condensate mass fraction g and
its derivative dg/ds in IGZ, both exponentially small in order of magnitude, are in
turn evaluated from the asymptotic expressions (62) and (63) by replacing all of the
thermodynamic functions by their frozen values. In FGZ, RGZ and OZ the solution
at any point along streamlines can be obtained iteratively by utilizing the nearly
frozen functional relations (57)–(61) and the asymptotic expressions given above.
This iterative scheme is fairly simple. On any streamline we first use the local frozen
solution to calculate g and its derivatives from (62)–(64) in FGZ and from (65)–(70)
in RGZ and OZ. Substitution of these values for g into the functional relations then
yields the first iterative approximation for the flow field. Using these first iterates for
the flow field, we correct for the thermodynamic functions, in particular for dB/ds
and d2B/ds2 . Substitution of these corrected values into (62)–(64) in FGZ and into
(65)–(70) in RGZ and OZ yields new iterates for g and its derivatives. Inserting these
values into the functional relations (57)–(61) yields the second iterative approximation
for the flow field (usually a single iteration suffices). The theoretical onset point s`,
that marks the end of the onset zone with a maximum nucleation rate, can now be
identified as the point where (dB

ds

)
s=s`

= 0. (71)

By repeating the procedure for different streamlines, we obtain the locus of theoretical
onset points which we will refer to as the nucleation wave front (curve EF in figure 3).

4.2. Heat addition zones

Along any streamline downstream of the onset zone (s > s`), the effect of heat
addition to the flow can no longer be taken into account by the nearly frozen
approximation of § 4.1. In this case a new solution to the flow field should be sought.
Considering the integral condensation rate equation (29) downstream of the onset
zone, two asymptotically and physically distinct zones can be distinguished. These
are the nucleation zone with growth (NZ), where both nucleation and droplet growth
are important, and the droplet growth zone (DGZ) which is dominated by droplet
growth (see figure 2). The nucleation zone with growth (NZ) meets the onset zone
(OZ) on the nucleation wave front EF (see figure 3) and extends downstream on a
streamline until nucleation becomes negligible for any practical purpose. The effect
of heat addition on the flow field can now be felt much more strongly, showing an
increase in the pressure, density and temperature of the mixture over the thickness of
the zone. Using Laplace’s method for an interior minimum at s = s` in the limit as
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Figure 3. Construction of the network of characteristics for the asymptotic solution in the heat
addition zones (EF is the nucleation wave front, OT is the tail of the expansion fan and OH is the
isentropic (virtual) head of the expansion fan).

K → 0 and then λ → ∞, the condensation rate equation (29) in this zone yields the
asymptotic expressions (details are given in Delale et al. 1993 a)

g(s) = b`[(r
∗
` + a`φ)3F0(φ)− 3a`(r

∗
` + a`φ)2F1(φ) + 3a2

`(r
∗
` + a`φ)F2(φ)− a3

`F3(φ)], (72)

$(s) ≡ u(s)dg

ds
= r∗

3
(s)
Σ(s)

ρ(s)
exp[−K−1B(s)]

+3λΩ(s)u(s)b`
{

(r∗` + a`φ)2F0(φ)− 2a`(r
∗
` + a`φ)F1(φ) + a2

`F2(φ)
}
, (73)

where the scaled coordinate φ and the constants a` and b` are given by

φ ≡ β1/2
` (s− s`) > 0, (74)

a` ≡ λΩ`β−1/2
` , (75)

b` ≡
Σ`

ρ`u`
β
−1/2
` exp[−K−1B`], (76)
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with subscript ` denoting values at s = s` and where the functions Fk(φ) (k = 0, 1, 2, 3)
are defined by

F0(φ) ≡ 1
2
π1/2(1 + erfφ), (77)

F1(φ) ≡ − 1
2
e−φ

2

, (78)

F2(φ) ≡ 1
4
π1/2(1 + erfφ)− 1

2
φe−φ

2

, (79)

and

F3(φ) ≡ − 1
2
(φ2 + 1)e−φ

2

(80)

with erfφ denoting the conventional error function. In particular, in the far field of
this zone (as φ→∞) we obtain the asymptotic expressions

g ∼ π1/2b`a
3
`

{
φ3 + 3

( r∗`
a`

)
φ2 + 3

[1

2
+
( r∗`
a`

)2]
φ+

( r∗`
a`

)3

+
3

2

( r∗`
a`

)}
(81)

and

$ ∼ 3π1/2λΩ(s)u(s)b`a
2
`

[
φ2 + 2

( r∗`
a`

)
φ+

( r∗`
a`

)2

+
1

2

]
. (82)

These expressions, which correspond to linear growth of the droplet radius with the
streamwise coordinate, cannot persist downstream of this zone where the two-phase
mixture relaxes towards saturated equilibrium states. For this reason, downstream of
NZ, we conveniently define the scaled variables R̄ and χ along streamlines by

R̄ = ΛK−1/3

∫ s

s`

Ω(η)

Ω`
dη, (83)

χ = ΛK−1/3(s− s`), (84)

with

Λ = (π1/2b`K)1/3λΩ`. (85)

Using Laplace’s variable for an interior minimum at s = s` in the double limit as
K → 0 and λ → ∞ , the condensation rate equation yields, in terms of the new
streamwise coordinate χ,

g = R̄3 + ε2R̄
2 + ε1R̄ + ε0 (86)

and

$ = (π1/2b`)
1/3λΩ(s)u(s)(3R̄2 + 2ε2R̄ + ε1), (87)

where

ε0 = π1/2b`[r
∗
`

3
+ 3

2
a2
`r
∗
`], (88)

ε1 = 3(π1/2b`)
2/3[r∗`

2
+ 1

2
a2
`], (89)

ε2 = 3(π1/2b`)
1/3r∗`, (90)

and where R̄ satisfies the relaxation rate equation

dR̄

dχ
= Ω̄ =

Ω

Ω`
, (91)

with the initial condition R̄ = 0 at χ = 0.
Now that we have obtained the asymptotic expressions for g and dg/ds in the

heat addition zones (NZ and DGZ), we can construct a semi-analytical solution
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by returning to the characteristic form given by (38)–(42). Let Mi,j (j = 1, 2, ...) be
points in the heat addition zones NZ or DGZ of the expansion wave on a given
curve, labelled curve i in figure 3, where the flow field is assumed known (the initial
curve i = 1 is taken as the nucleation wave front EF constructed from the nearly
frozen solution). The aim is to locate by interpolation the points Mi+1,j , j = 1, 2, . . .,
which are points of intersection of the characteristic lines Mi,j Mi+1,j , Mi,j+1 Mi+1,j and
Ni,j+1 Mi+1,j , and to find the flow field at these points. Writing (38)–(40) along the
streamline Mi,j+1 Mi+1,j , equation (41) with the (+) sign along the characteristic line
Mi,j Mi+1,j and with the (−) sign along the characteristic line Ni,j+1 Mi+1,j together with
the equations for characteristics given by (42) in finite difference form, and utilizing
the local asymptotic expressions (72), (73) in NZ and (86), (87) in DGZ, we iteratively
locate the points Ni,j+1 and Mi+1,j (j = 1, 2, ...) and solve for the flow field at the
points Mi+1,j (j = 1, 2, ...). Starting with the initial curve i = 1 (the nucleation wave
front) and repeating the same procedure for increasing i until complete relaxation of
the rate equation (91) along streamlines is reached, we obtain the subcritical solution
for the flow field in the heat addition zones NZ and DGZ.

The solution thus obtained yields a continuous solution for the flow field (subcritical
flows) provided that the heat added to the flow does not exceed a critical value. Cases
where this critical value is exceeded (supercritical flows) show embedded shock waves
and need separate consideration.

5. Asymptotic predictions and comparison with experiments

Predictions of the subcritical asymptotic solution for Prandtl–Meyer flows with
homogeneous condensation presented in the preceding sections can now be made by
assuming a nucleation rate equation and a droplet growth law. For the condensation
of water vapour with a carrier gas in the range of temperatures to be investigated,
the classical nucleation rate equation and the Hertz–Knudsen droplet growth law,
together with some poorly known thermodynamic functions such as surface tension
and accommodation coefficient fitted to the recent experiments of Peters & Paikert
(1989), have been shown to compare well with experimental data in nozzles (e.g.
see Schnerr & Dohrmann 1990; Delale et al. 1993 a ). Thus we employ the same
condensation model. As in the procedure given in Delale et al. (1993 a), we cast the
classical nucleation rate equation into the normalized form of (22) with

ζ ′ =

(
1

500π

)1/2(
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100

)4

(m′)−3/2w
2
1ρ
′
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2
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, (92)

Σ(p, T , g) =
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f(T )

T 3
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p2, (93)

B(p, T , g) = [f(T )]3[lnS(p, T , g)]−2 (94)

and
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16π
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m′

)2(
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)9

, (95)
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where the normalized surface tension f(T ) and the supersaturation S(p, T , g) are
given by

f(T ) =

{
(100/T ′1)

4[76.1 + 0.155(273.15− T ′1T )/T ] for T > 249.4/T ′1

(11.31− 0.03709T ′1T )T 3 for T < 249.4/T ′1

(96)

and

S(p, T , g) =
p′1µm(w1 − g)

T ′1
2.4576(µv − µmg)

p

T 2.4576exp[ν0 + ν1T + ν2T 2 + ν3/T ]
(97)

with ν0 = 21.125 , ν1 = −2.7246× 10−2T ′1 , ν2 = 1.6853× 10−5T ′1
2 and ν3 = −6.095×

103/T ′1 . Moreover, in (92)–(97), m′ is the mass of a single vapour molecule and
k = 1.38× 10−23 J K−1 is Boltzmann’s constant. Similarly (details are given in Delale
et al. 1993 a) the Hertz–Knudsen droplet growth law can be cast into the normalized
form of (25) with

λ = 2× 10−4 `
′

r′d

T ′1
1.4576(µvµm)1/2

(2π)1/2ρ′con<
, (98)

Ω(p, T , g) = 5× 103α(T )
T 1.9576exp[ν0 + ν1T + ν2T

2 + ν3/T ]

(2[cpm(1− T ) + u2/2 + (µm/µv)Lg])1/2

× [S(p, T , g)− 1], (99)

where the accommodation coefficient α(T ) is given by

α(T ) =

0.5 for T > 270/T ′1
1− 0.0125(T ′1T − 230) for 230/T ′1 6 T 6 270/T ′1
1 for T < 230/T ′1.

(100)

The normalized critical radius r∗(p, T , g) can then be obtained from the normalized
Gibbs–Thomson equation as

r∗(p, T , g) =
2m′

105r′dρ
′
conk

( T ′1
100

)3 f(T )

lnS(p, T , g)
. (101)

With the above information, an algorithm for Prandtl–Meyer flows with subcritical
heat addition from condensation can be developed for the expansion of moist air. The
nucleation wave front (curve EF in figure 3) is precisely located using the asymptotic
method described in the previous section, and the nearly frozen zones are identified
along streamlines. The effect of heat addition on the flow field is computed semi-
analytically in the heat addition zones. Using this algorithm, the subcritical asymptotic
solution is compared with available experimental data for the expansion of moist
air around a sharp corner. Unfortunately literature on experimental data in corner
expansion flows with condensation is scarce. This may be due to the difficulty of
realizing a Prandtl–Meyer flow in practice. Among experiments on corner expansion
flows of moist air, we can cite those by Smith (1971) and more recently by Frank
(1985). Since measured points of onset of condensation (which presumably lie in the
onset zone (OZ) and form the so-called condensation wave front) are plotted in the
physical plane and details of the experimental conditions are reported therein, we
choose to compare the asymptotic predictions with the experiments of Smith (1971).
In those experiments corner expansions with condensation were carried out in a
Ludwieg tube intermittent supersonic wind tunnel producing a steady flow through a
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two-dimensional nozzle. A sharp corner with an angle of deviation of 40◦ was located
on the lower nozzle block at the geometric nozzle throat. Stagnation properties
at the nozzle entrance were computed from measured tunnel supply temperature,
pressure and relative humidity using standard gas dynamic equations for Ludwieg
tube operation. Interferograms of the expansion were made by a Mach–Zehnder
interferometer and were analysed to obtain information on the onset of condensation
and on the shape of the condensation front.

Before we compare the asymptotic predictions with measurements, it would be
useful to discuss some of the difficulties in realizing the corner expansion flows of
moist air in the experimental set-up of Smith (1971) outlined above. One difficulty is
with the location of the sharp corner being taken at the throat of the nozzle, resulting
in a supersaturated state (S > 1) of the condensable vapour in the oncoming flow
conditions. This means that the oncoming flow for the Prandtl–Meyer expansion
is already nucleating. Other difficulties arise in conjunction with the effect of the
boundary layer near the corner, which produces deviations from isentropic flow, and
also with the non-uniformity of the oncoming flow at the corner. It is well-known that
for an expansion in a convergent–divergent nozzle, the gradients at the throat are
finite (non-vanishing), resulting in a non-uniform flow at the throat where the corner
is located. However, the oncoming flow in the Prandtl–Meyer expansion around a
corner is assumed to be uniform. Thus we have to allow for discontinuities in the flow
gradients at the throat (along the line x′ = 0) if we are to proceed with the asymptotic
solution of subcritical corner expansion flows as realized in a convergent–divergent
nozzle experiment. The features discussed above show that a smooth variation of the
activation function B over the whole length of the nozzle is not possible. A typical
variation of B along streamlines for the experimental set-up of Smith (1971) is shown
in figure 4, in contrast to the typical smooth variation of figure 2. The oncoming flow
being non-uniform and already nucleating (S > 1) at the tail of the expansion fan
gives rise to a singularity of the activation function there. This singularity not only
induces a change in the slope of the activation function along a streamline, but it also
leads to a change in the sign of the curvature of the activation function. Consequently,
the activation function B has to pass through an inflection point located downstream
of this singularity if it is to reach the turning point s = s` along the streamline. This,
in turn, seems to result in a downstream shift of the onset zone (OZ) computed by
the subcritical asymptotic solution as compared to that realized in the experiments
of Smith (1971). In principle the contribution from the singularity in B could be
calculated, using standard asymptotic arguments, if the derivatives of B on either side
of the singular point were known. That information is, unfortunately, not available
for Smith’s (1971) experiments, where we have information about the oncoming flow
at the throat section only. Another important difficulty in realizing ideal Prandtl–
Meyer flows in the experimental set-up of Smith arises from the interference of waves
reflected from the upper wall of the nozzle, as already mentioned by Smith (1971)
himself.

With these difficulties in mind, we can now compare the predictions of the asymp-
totic theory against the onset measurements of Smith (1971), which were deduced by
measuring changes in fringe curvature. Figure 5 shows the measured condensation
wave fronts (measured onset conditions) and the nucleation wave fronts predicted
by (71) in the physical (x′, y′)-plane for moist air expansions under two different
nozzle supply conditions in the experiments of Smith (1971). Despite quantitative
disagreement, there is qualitative agreement between measured and predicted values.
The condensation and nucleation wave fronts are all concave with respect to the
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Figure 4. Typical variation of the normalized activation function B and the condensation zones
along a streamline in the experiments of Smith (1971) (sc is the streamwise location where saturation
is reached and s` is the turning point of B).

oncoming flow. Also, as the relative humidity in the nozzle supply is increased, both
the condensation and nucleation wave fronts move upstream in the expansion, as
expected. However, the theoretical nucleation wave fronts are significantly delayed
compared to the corresponding measured condensation wave fronts. In order to
understand these differences, we proceed further to the heat addition zones using
the algorithm developed for subcritical flows. Figure 6 shows the positions of two
neighbouring expansion waves (Mach waves) in the (x′, y′)-plane for the expansion
of moist air under the conditions of nozzle supply temperature T ′0 = 284 K, specific
humidity w0 = 6.8 g kg−1 and relative humidity ϕ0 = 0.41 in the experiments of Smith.
As the nucleation wave front DF is traversed, the characteristics are curved toward
the oncoming flow, showing clearly the effect of heat addition by condensation. Two
typical neighbouring characteristics with initial inclination angles ψOM = 39◦ and
ψOD = 30◦ are, respectively, shown by the curves OMP and ODQ. Even for this case,
with the lowest available nozzle supply relative humidity at which measurements
were carried out, the characteristics OMP and ODQ intersect, showing clearly the
existence of an embedded shock wave for the conditions considered. This embedded
shock wave pushes the nucleation wave front upstream towards a better agreement
with the measured condensation wave front and is responsible for at least some of
the quantitative differences mentioned above.

The predicted subcritical flow characteristics under the same nozzle supply condi-
tions in the experiments of Smith along a typical streamline at a distance D′ = 9.86
cm away from the corner at the nozzle throat are plotted in figures 7 and 8. The
results show that the flow field in the nearly frozen zones is almost isentropic except
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Figure 5. The measured onset conditions and the position of the subcritical nucleation wave front
for the experiments of Smith (1971): •, measured onset conditions under nozzle supply temperature
T ′0 = 284 K, supply specific humidity w0 = 6.8 g/kg and supply relative humidity ϕ0 = 0.41; −−−,
the corresponding nucleation wave front computed by the subcritical asymptotic solution. +,
Measured onset conditions under nozzle supply temperature T ′0 = 284 K, supply specific humidity
w0 = 6.4 g/kg and supply relative humidity ϕ0 = 0.69; ———, the corresponding nucleation wave
front computed by the subcritical asymptotic solution.

for the thin onset zone (OZ) where deviations from the isentropic solution begin
to occur. It is important to realize that the subcritical solution thus obtained will
be interrupted by the presence of an embedded shock wave due to excessive heat
release by condensation as required by the intersecting characteristics in figure 6. The
discussion of the origin and location of this embedded shock wave in the (x′, y′)-plane
of figure 6 requires separate consideration and will not be considered here.

6. Conclusions
An asymptotic solution for corner expansion flows with homogeneous condensa-

tion has been presented for subcritical flows, i.e. flows not exceeding a critical amount
of heat release by condensation. Distinct condensation zones with detailed analytical
structure are exhibited along streamlines by the asymptotic solution of the conden-
sation rate equation in the limit of a relatively slow nucleation process followed by
rapid droplet growth. In particular the nucleation wave front, which corresponds to
states of maximum nucleation, is constructed analytically independent of any nu-
cleation and droplet growth models to be employed. The solution for the flow field
along streamlines is given in closed form up to the location of the nucleation wave
front and is seen to be almost isentropic, except within the thin onset zone (OZ).
The flow field in the heat addition zones downstream of the nucleation wave front
is also exhibited semi-analytically by the asymptotic solution for subcritical flows.
Consequently an algorithm for the asymptotic solution of subcritical flows around a
sharp corner can be constructed and rigorous computations under the experimental
conditions reported by Smith (1971) can be carried out by this algorithm using the



44 C. F. Delale and D. G. Crighton

12

9

6

3

3 6 9 12

40° 16.8°

H

O D

M
N

F Q P

P′

Q′

y′ (cm)

x′ (cm)

Figure 6. The characteristics, emanating from the corner and intersecting in the heat addition
zones, computed by the subcritical asymptotic solution for the experiments of Smith (1971) under
nozzle supply temperature T ′0 = 284 K, supply specific humidity w0 = 6.8 g kg−1 and supply relative
humidity ϕ0 = 0.41 (DF is the nucleation wave front, OMNP and ODNQ are, respectively, the
characteristics with initial inclination angles ψOM = 39◦ and ψOD = 30◦ intersecting at point N, lines
OMP′ and ODQ′ are the corresponding isentropic Mach lines).

classical nucleation theory and Hertz–Knudsen droplet growth law. In particular the
onset measurements (condensation wave fronts) of Smith, with different initial relative
humidities, are compared with the corresponding nucleation wave fronts obtained by
this algorithm. Despite the experimental difficulties encountered in realizing Prandtl–
Meyer flows around a sharp corner, some qualitative features can be established
in comparing the results of Smith’s (1971) experiments with those obtained by the
subcritical algorithm:

(a) the nucleation and condensation wave fronts are both concave with respect to
the oncoming flow;

(b) as the initial relative humidity is increased, the nucleation and condensation
wave fronts both occur further upstream in the expansion fan;

(c) the flow field along streamlines is almost isentropic up to the nucleation wave
front, except within the thin onset zone (OZ);

(d) the characteristics (or Mach lines) emerging from the corner, obtained by the
semi-analytical asymptotic solution, are curved due to latent heat addition as they
cross the nucleation wave front. Consequently the flow field within the heat addition
zones deviates significantly from the self-similar solution of corner expansion flows.

However, the nucleation wave fronts obtained by the subcritical algorithm are
considerably delayed compared to the onset measurements made by Smith (1971).
Although some of the disagreement may result from the difficulties in realizing
a Prandtl–Meyer expansion in the experiments of Smith, computations using the
subcritical algorithm show intersecting characteristics in the heat addition zones,
indicating the existence of an embedded oblique shock wave in the expansion fan
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Figure 8. The distributions of the pressure p′, the nucleation rate J ′ and the condensate mass
fraction g along a streamline with initial distance D′ = 9.86 cm from the corner under the nozzle
supply conditions stated in figure 6 for the experiments of Smith (1971) (the dashed line corresponds
to the isentropic pressure distribution).

(supercritical flows). This embedded oblique shock wave pushes the computed nucle-
ation wave front upstream and seems to be responsible for most of the observed delay
between the computed nucleation wave front and the measured onset conditions. The
computation of the origin and location of this embedded shock together with the
solution downstream of the shock requires separate consideration.
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